Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 157
2.
Mol Psychiatry ; 28(11): 4622-4631, 2023 Nov.
Article En | MEDLINE | ID: mdl-37723283

Although mitochondrial dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. An emerging paradigm suggests mitochondria play an important non-energetic role in adaptation to stress, impacting cellular resilience and acting as a source of systemic allostatic load. Known as mitochondrial allostatic load, this (phenomenon) occurs when mitochondria are unable to recalibrate and maintain cell homeostasis. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls. We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. In this study, 14 BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. Ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. After adjusting for confounding variables, such as age, sex, body mass index (BMI), and smoking status, patients with BD presented lower MHI compared to non-psychiatry controls, as well as higher ccf-mtDNA levels that negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, MHI and ccf-mtDNA were also examined in relation to several MQC-related proteins, such as Fis-1, Opa-1, and LC3. Our results showed that MHI correlated negatively with Fis-1 and positively with Opa-1 and LC3. Accordingly, ccf-mtDNA had a positive correlation with Fis-1 and a negative correlation with Opa-1 and LC3. Furthermore, we found a noteworthy inverse correlation between illness severity and MHI, with lower MHI and higher ccf-mtDNA levels in subjects with a longer illness duration, worse functional status, and higher depressive symptoms. Our findings indicate that mitochondrial allostatic load contributes to BD, suggesting mitochondria represent a potential biological intersection point that could contribute to impaired cellular resilience and increased vulnerability to stress and mood episodes. Ultimately, by linking mitochondrial dysfunction to disease progression and poor outcomes, we might be able to build a predictive marker that explains how mitochondrial function and its regulation contribute to BD development and that may eventually serve as a treatment guide for both old and new therapeutic targets.


Bipolar Disorder , Mitochondrial Diseases , Humans , Bipolar Disorder/genetics , Bipolar Disorder/metabolism , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Diseases/metabolism
4.
Res Sq ; 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37162936

Background: Although mitochondria dysfunction is known to play an essential role in the pathophysiology of bipolar disorder (BD), there is a glaring gap in our understanding of how mitochondrial dysfunction can modulate clinical phenotypes. This study aimed to evaluate the composite mitochondrial health index (MHI) in BD subjects and non-psychiatry controls (Non-psychiatry controls). We will also explore whether lower MIH will be related to higher cell-free mtDNA (ccf-mtDNA) levels and poor clinical outcomes. Methods: Fourteen BD-I patients and 16 age- and sex-matched non-psychiatry controls were enrolled for this study. Peripheral blood mononuclear cells (PBMCs) were used to measure the enzymatic activities of citrate synthase and complexes I, II, and IV and mtDNA copy number. ccf-mtDNA was evaluated by qPCR in plasma. Mitochondrial quality control (MQC) proteins were evaluated by western blotting. Results: One-Way ANCOVA after controlling for age, sex, body mass index (BMI), and smoking status showed that patients with BD present a decrease in the MHI compared to non-psychiatry controls, and higher ccf-mtDNA levels, which was negatively correlated with MHI. Because the MQC network is essential to maintain mitochondrial health, we also evaluated the relationship between MQC-related proteins with MHI and ccf-mtDNA. Our results showed that MHI negatively correlated with Fis-1 and positively with Opa-1 and LC3. Moreover, we found a negative correlation between ccf-mtDNA, Opa-1, and LC3 and a positive correlation between cff-mtDNA and Fis-1. Finally, we found that subjects with longer illness duration, higher depressive symptom scores, and worse functional status had lower MHI and higher ccf-mtDNA. Conclusion: In summary, the present findings corroborate previous studies and provide strong support for the hypothesis that mitochondrial regulation and function are integral parts of the pathogenesis of BD.

5.
Adv Exp Med Biol ; 1411: 191-208, 2023.
Article En | MEDLINE | ID: mdl-36949311

Bipolar disorder (BD) is a severe and chronic psychiatric disorder that affects approximately 1-4% of the world population and is characterized by recurrent episodes of mania or hypomania and depression. BD is also associated with illnesses marked by immune activation, such as metabolic syndrome, obesity, type 2 diabetes mellitus, and cardiovascular diseases. Indeed, a connection has been suggested between neuroinflammation and peripheral inflammatory markers in the pathophysiology of BD, which can be associated with the modulation of many dysfunctional processes, including synaptic plasticity, neurotransmission, neurogenesis, neuronal survival, apoptosis, and even cognitive/behavioral functioning. Rising evidence suggests that synaptic dysregulations, especially glutamatergic system dysfunction, are directly involved in mood disorders. It is becoming clear that dysregulations in connection and structural changes of glial cells play a central role in the BD pathophysiology. This book chapter highlighted the latest findings that support the theory of synaptic dysfunction in BD, providing an overview of the alterations in neurotransmitters release, astrocytic uptake, and receptor signaling, as well as the role of inflammation on glial cells in mood disorders. Particular emphasis is given to the alterations in presynaptic and postsynaptic neurons and glial cells, all cellular elements of the "tripartite synapse," compromising the neurotransmitters system, excitatory-inhibitory balance, and neurotrophic states of local networks in mood disorders. Together, these studies provide a foundation of knowledge about the exact role of the glial-neuronal interaction in mood disorders.


Bipolar Disorder , Diabetes Mellitus, Type 2 , Humans , Bipolar Disorder/metabolism , Diabetes Mellitus, Type 2/metabolism , Neuroglia/physiology , Neurons/metabolism , Neurotransmitter Agents/metabolism , Synapses/metabolism
7.
Curr Opin Psychiatry ; 36(1): 20-27, 2023 01 01.
Article En | MEDLINE | ID: mdl-36449729

PURPOSE OF REVIEW: Due to bipolar disorder clinical heterogeneity, a plethora of studies have provided new genetic, epigenetic, molecular, and cellular findings associated with its pathophysiology. RECENT FINDINGS: Genome-wide association studies and epigenetic evidence points to genotype-phenotype interactions associated with inflammation, oxidative stress, abnormalities in signaling pathways, hypothalamic-pituitary-adrenal axis, and circadian rhythm linked to mitochondrial dysfunction in bipolar disorder. Although the literature is constantly increasing, most of the genetic variants proposed as biomarkers remain to be validated by independent groups and use bigger samples and longitudinal approaches to enhance their power and predictive ability. SUMMARY: Regardless of which of the mechanisms described here plays a primary or secondary role in the pathophysiology of bipolar disorder, all of these interact to worsen clinical outcomes for patients. Identifying new biomarkers for early detection, prognosis, and response to treatment might provide novel targets to prevent progression and promote general well being.


Bipolar Disorder , Humans , Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Genome-Wide Association Study , Circadian Rhythm
8.
Eur Neuropsychopharmacol ; 62: 10-21, 2022 09.
Article En | MEDLINE | ID: mdl-35810614

Bipolar disorder (BD) has been previously associated with clinical signs of premature aging, including accelerated epigenetic aging in blood and brain, and a steeper age-related decline in cognitive function. However, the clinical drivers and cognitive correlates of epigenetic aging in BD are still unknown. We aimed to investigate the relationship between multiple measures of epigenetic aging acceleration with clinical, functioning, and cognitive outcomes in patients with BD and controls. Blood genome-wide DNA methylation levels were measured in BD patients (n = 153) and matched healthy controls (n = 50) with the Infinium MethylationEPIC BeadChip (Illumina). Epigenetic age estimates were calculated using an online tool, including the recently developed lifespan predictor GrimAge, and analyzed with generalized linear models controlling for demographic variables and blood cell proportions. BD was significantly associated with greater GrimAge acceleration (AgeAccelGrim, ß=0.197, p = 0.009), and significant group-dependent interactions were found between AgeAccelGrim and blood cell proportions (CD4+ T-lymphocytes, monocytes, granulocytes, and B-cells). Within patients, higher AgeAccelGrim was associated with worse cognitive function in multiple domains (short-term affective memory (ß=-0.078, p = 0.030), short-term non-affective memory (ß=-0.088, p = 0.018), inhibition (ß=0.064, p = 0.046), and problem solving (ß=-0.067, p = 0.034)), age of first diagnosis with any mood disorder (ß=-0.076, p = 0.039) or BD (ß=-0.102, p = 0.016), as well as with current non-smoking status (ß=-0.392, p < 0.001). Overall, our findings support the contribution of epigenetic factors to the aging-related cognitive decline and premature mortality reported in BD patients, with an important driving effect of smoking in this population.


Bipolar Disorder , Cognitive Dysfunction , Acceleration , Aging , DNA Methylation , Epigenesis, Genetic , Humans , Smoking
9.
Metab Brain Dis ; 37(5): 1585-1596, 2022 06.
Article En | MEDLINE | ID: mdl-35394251

Maple Syrup Urine Disease (MSUD) is caused by the deficiency in the activity of the branched-chain α-ketoacid dehydrogenase complex (BCKDC), resulting in the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, and their respective branched-chain α-keto acids. Patients with MSUD are at high risk of developing chronic neuropsychiatric disorders; however, the pathophysiology of brain damage in these patients remains unclear. We hypothesize that MSUD can cause depressive symptoms in patients. To test our hypothesis, Wistar rats were submitted to the BCAA and tianeptine (antidepressant) administration for 21 days, starting seven days postnatal. Depression-like symptoms were assessed by testing for anhedonia and forced swimming after treatments. After the last test, the brain structures were dissected for the evaluation of neutrophins. We demonstrate that chronic BCAA administration induced depressive-like behavior, increased BDNF levels, and decreased NGF levels, suggesting a relationship between BCAA toxicity and brain damage, as observed in patients with MSUD. However, the administration of tianeptine was effective in preventing behavioral changes and restoring neurotrophins levels.


Maple Syrup Urine Disease , Thiazepines , Amino Acids, Branched-Chain/metabolism , Animals , Maple Syrup Urine Disease/metabolism , Nerve Growth Factors/metabolism , Rats , Rats, Wistar , Thiazepines/pharmacology
10.
Metab Brain Dis ; 37(4): 1155-1161, 2022 04.
Article En | MEDLINE | ID: mdl-35275349

Maple Syrup Urine Disease (MSUD) is an autosomal recessive inherited disorder caused by a deficiency in the activity of the branched-chain alpha-ketoacid dehydrogenase complex leading to the accumulation of branched-chain amino acids (BCAA) leucine, isoleucine, and valine and their respective branched-chain α-ketoacids and corresponding hydroxy acids. Considering that Danio rerio, known as zebrafish, has been widely used as an experimental model in several research areas because it has favorable characteristics that complement other experimental models, this study aimed to evaluate oxidative stress parameters in zebrafish exposed to high levels of leucine (2 mM and 5 mM), in a model similar of MSUD. Twenty-four hours after exposure, the animals were euthanized, and the brain content dissected for analysis of oxidative stress parameters: thiobarbituric acid reactive substances (TBARS), 2',7'-dichlorofluorescein oxidation assay (DCF); content of sulfhydryl, and superoxide dismutase (SOD) and catalase (CAT) activities. Animals exposed to 2 mM and 5 mM leucine showed an increase in the measurement of TBARS and decreased sulfhydryl content. There were no significant changes in DCF oxidation. In addition, animals exposed to 2 mM and 5 mM leucine were found to have decreased SOD activity and increased CAT activity. Based on these results, exposure of zebrafish to high doses of leucine can act as a promising animal model for MSUD, providing a better understanding of the toxicity profile of leucine exposure and its use in future investigations and strategies related to the pathophysiology of MSUD.


Maple Syrup Urine Disease , Zebrafish , Animals , Antioxidants/pharmacology , Brain/metabolism , Leucine/metabolism , Leucine/pharmacology , Maple Syrup Urine Disease/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Zebrafish/metabolism
11.
Mol Psychiatry ; 27(2): 1095-1102, 2022 02.
Article En | MEDLINE | ID: mdl-34650203

Recent studies have suggested that mitochondrial dysfunction and dysregulated neuroinflammatory pathways are involved in the pathophysiology of major depressive disorder (MDD). Here, we aimed to assess the differences in markers of mitochondrial dynamics, mitophagy, general autophagy, and apoptosis in peripheral blood mononuclear cells (PBMCs) of MDD patients (n = 77) and healthy controls (HCs, n = 24). Moreover, we studied inflammation engagement as a moderator of mitochondria dysfunctions on the severity of depressive symptoms. We found increased levels of Mfn-2 (p < 0.001), short Opa-1 (S-Opa-1) (p < 0.001) and Fis-1 (p < 0.001) in MDD patients, suggesting an increase in the mitochondrial fragmentation. We also found that MDD patients had higher levels of Pink-1 (p < 0.001), p62/SQSTM1 (p < 0.001), LC3B (p = 0.002), and caspase-3 active (p = 0.001), and lower levels of parkin (p < 0.001) compared with HCs. Moreover, we showed that that MDD patients with higher CRP levels had higher levels of Mfn-2 (p = 0.001) and LC3B (p = 0.002) when compared with MDD patients with low CRP. Another notable finding was that the severity of depressive symptoms in MDD is associated with changes in protein levels in pathways related to mitochondrial dynamics and mitophagy, and can be dependent on the inflammatory status. Overall, our study demonstrated that a disruption in the mitochondrial dynamics network could initiate a cascade of abnormal changes relevant to the critical pathological changes during the course of MDD and lead to poor outcomes.


Depressive Disorder, Major , Mitophagy , Apoptosis/physiology , Depressive Disorder, Major/metabolism , Humans , Inflammation , Leukocytes, Mononuclear/metabolism , Mitochondrial Dynamics , Mitophagy/physiology
12.
Mitochondrion ; 61: 1-10, 2021 11.
Article En | MEDLINE | ID: mdl-34478906

Mitochondria, the 'powerhouse' of eukaryotic cells, play a key role in cellular homeostasis. However, defective mitochondria increase mitochondrial ROS (mtROS) production and cell-free mitochondrial DNA (mtDNA) release, leading to increased inflammation. Mitophagy is a vital pathway, which selectively removes defective mitochondria through the process of autophagy. Thus, an impairment in the mitophagy pathway might trigger the gradual accumulation of defective mitochondria. Accumulating evidence suggest that inflammation and mitochondrial dysfunction are linked to the pathogenesis of depression. In this article, we have reviewed the role of impaired mitophagy as a contributing factor in depression pathophysiology. Further, we have discussed the potential therapeutic interventions aimed at modulating mitophagy in depression.


Depression/physiopathology , Mitochondria/physiology , Mitophagy/physiology , Humans
13.
Front Psychiatry ; 12: 546801, 2021.
Article En | MEDLINE | ID: mdl-34295268

Mitochondria are cellular organelles involved in several biological processes, especially in energy production. Several studies have found a relationship between mitochondrial dysfunction and mood disorders, such as major depressive disorder and bipolar disorder. Impairments in energy production are found in these disorders together with higher levels of oxidative stress. Recently, many agents capable of enhancing antioxidant defenses or mitochondrial functioning have been studied for the treatment of mood disorders as adjuvant therapy to current pharmacological treatments. A better knowledge of mitochondrial physiology and pathophysiology might allow the identification of new therapeutic targets and the development and study of novel effective therapies to treat these specific mitochondrial impairments. This could be especially beneficial for treatment-resistant patients. In this article, we provide a focused narrative review of the currently available evidence supporting the involvement of mitochondrial dysfunction in mood disorders, the effects of current therapies on mitochondrial functions, and novel targeted therapies acting on mitochondrial pathways that might be useful for the treatment of mood disorders.

14.
Front Psychiatry ; 12: 671840, 2021.
Article En | MEDLINE | ID: mdl-34149481

The aims of this article are to discuss the rationale, design, and procedures of the Greater Houston Area Bipolar Registry (HBR), which aims at contributing to the effort involved in the investigation of neurobiological mechanisms underlying bipolar disorder (BD) as well as to identify clinical and neurobiological markers able to predict BD clinical course. The article will also briefly discuss examples of other initiatives that have made fundamental contributions to the field. This will be a longitudinal study with participants aged 6-17 at the time of enrollment. Participants will be required to meet diagnostic criteria for BD, or to be offspring of a parent with BD. We will also enroll healthy controls. Besides clinical information, which includes neurocognitive performance, participants will be asked to provide blood and saliva samples as well as to perform neuroimaging exams at baseline and follow-ups. Several studies point to the existence of genetic, inflammatory, and brain imaging alterations between individuals at higher genetic risk for BD compared with healthy controls. Longitudinal designs have shown high conversion rates to BD among high-risk offspring, with attempts to identify clinical predictors of disease onset, as well as clarifying the burden associated with environmental stressors. The HBR will help in the worldwide effort investigating the clinical course and neurobiological mechanisms of affected and high-risk children and adolescents with BD.

15.
Metab Brain Dis ; 36(5): 1057-1067, 2021 06.
Article En | MEDLINE | ID: mdl-33616841

D-galactose (D-gal) is a carbohydrate widely distributed in regular diets. However, D-gal administration in rodents is associated with behavioral and neurochemical alterations similar to features observed in aging. In this regard, this study aimed to investigate the effects of D-gal exposure, in different periods, in rats' brain regions' activities of creatine kinase (CK) and tricarboxylic acid (TCA) cycle enzymes. Male adult Wistar rats received D-gal (100 mg/kg, gavage) for 1, 2, 4, 6 or 8 weeks. CK and TCA enzymes' activities were evaluated in rats' prefrontal cortex and hippocampus. In general, the results showed an increase in citrate synthase (CS) and succinate dehydrogenase (SDH) activities in animals treated with D-gal compared to the control group in the prefrontal cortex and hippocampus. Also, in the fourth week, the malate dehydrogenase (MD) activity increased in the hippocampus of rats that received D-gal compared to control rats. In addition, we observed an increase in the CK activity in the prefrontal cortex and hippocampus in the first and eighth weeks of treatment in the D-gal group compared to the control group. D-gal administration orally administered modulated TCA cycle enzymes and CK activities in the prefrontal cortex and hippocampus, which were also observed in aging and neurodegenerative diseases. However, more studies using experimental models are necessary to understand better the impact and contribution of these brain metabolic abnormalities associated with D-gal consumption for aging.


Brain/drug effects , Citric Acid Cycle/drug effects , Creatine Kinase/metabolism , Galactose/administration & dosage , Malate Dehydrogenase/metabolism , Tricarboxylic Acids/metabolism , Administration, Oral , Animals , Brain/metabolism , Male , Rats , Rats, Wistar
16.
Metab Brain Dis ; 36(1): 185-192, 2021 01.
Article En | MEDLINE | ID: mdl-33034842

Maple syrup urine disease (MSUD) is characterized by a deficiency in the mitochondrial branched-chain α-keto acid dehydrogenase complex activity and, consequently, accumulation of the branched-chain amino acids and their respective branched-chain α-keto acids in fluids and the tissue. MSUD clinical symptoms include neurological alterations. KIC is considered one of the significant neurotoxic metabolites since its increased plasma concentrations are associated with neurological symptoms. We evaluated the effect of KIC intracerebroventricular (ICV) injection in hippocampal mitochondria function in rats. We also investigated the impact of KIC in cells' metabolic activity (using MTT assay) and reactive species (RS) production in HT-22 cells. For this, thirty-day-old male rats were bilaterally ICV injected with KIC or aCSF. Thus, 1 hour after the administration, animals were euthanized, and the hippocampus was harvested for measured the activities of mitochondrial respiratory chain enzymes and RS production. Furthermore, HT-22 cells were incubated with KIC (1-10 mM) in 6, 12, and 24 h. Mitochondrial complexes activities were reduced, and the formation of RS was increased in the hippocampus of rats after KIC administration. Moreover, KIC reduced the cells' metabolic ability to reduce MTT and increased RS production in hippocampal neurons. Impairment in hippocampal mitochondrial function seems to be involved in the neurotoxicity induced by KIC.


Amino Acids, Branched-Chain/metabolism , Hippocampus/drug effects , Keto Acids/pharmacology , Oxidative Stress/drug effects , Animals , Cell Line , Hippocampus/metabolism , Male , Maple Syrup Urine Disease/metabolism , Mice , Rats , Rats, Wistar
17.
Neurotox Res ; 39(2): 119-132, 2021 Apr.
Article En | MEDLINE | ID: mdl-33025358

Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.


Encephalitis/prevention & control , Glycoproteins/administration & dosage , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/administration & dosage , Sepsis-Associated Encephalopathy/prevention & control , Animals , Cells, Cultured , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Male , Oxidative Stress/drug effects , Rats, Wistar
18.
Mitochondrion ; 57: 23-36, 2021 03.
Article En | MEDLINE | ID: mdl-33340709

The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.


Bipolar Disorder/pathology , Calcium/metabolism , Glutamic Acid/metabolism , Mitochondria/metabolism , Apoptosis , Bipolar Disorder/metabolism , Brain/metabolism , Gene Expression Regulation , Humans , Oxidative Stress
19.
Bipolar Disord ; 23(7): 689-696, 2021 11.
Article En | MEDLINE | ID: mdl-33098737

BACKGROUND: There has been growing scientific evidence in recent years that bipolar disorder (BD) is associated with alterations in the kynurenine (KYN) pathway. However, many of these studies have been limited by their focus on adults. Thus, this preliminary study investigated differences in the peripheral levels of KYN metabolites in children and adolescents with BD, unaffected offspring of parents with BD, and healthy controls (HCs). METHODS: Plasma samples were collected from 49 youths with BD, 19 bipolar offspring, and 31 HCs. Tryptophan (TRP), KYN, and kynurenic acid (KYNA) were separated using electrospray ionization. RESULTS: One-Way ANCOVA after controlling for age, gender, race, BMI-for-age, and smoking status showed that BD had lower levels of KYN, while unaffected high-risk offspring subjects had lower levels of TRP, KYN, and KYNA when compared to HCs. Moreover, we found that KYN, KYN/TRP, and KYNA/KYN levels predicted the severity of depressive symptoms, while the YMRS score was not associated with any metabolite. CONCLUSIONS: In summary, this preliminary study has shown that KYN metabolites are decreased in both affected and unaffected subjects, strengthening the idea that the KYN pathway might underlie the familial risk of BD shown by high-risk offspring individuals. However, longitudinal studies are needed to examine whether the alterations observed in this study represent early markers of risk for later developing BD.


Bipolar Disorder , Kynurenine , Adolescent , Adult , Bipolar Disorder/metabolism , Child , Humans , Kynurenic Acid , Parents , Tryptophan
20.
Mol Neurobiol ; 57(11): 4451-4466, 2020 Nov.
Article En | MEDLINE | ID: mdl-32743736

Sepsis causes organ dysfunction due to an infection, and it may impact the central nervous system. Neuroinflammation and oxidative stress are related to brain dysfunction after sepsis. Both processes affect microglia activation, neurotrophin production, and long-term cognition. Fish oil (FO) is an anti-inflammatory compound, and lipoic acid (LA) is a universal antioxidant substance. They exert neuroprotective roles when administered alone. We aimed at determining the effect of FO+LA combination on microglia activation and brain dysfunction after sepsis. Microglia cells from neonatal pups were co-treated with lipopolysaccharide (LPS) and FO or LA, alone or combined, for 24 h. Cytokine levels were measured. Wistar rats were subjected to sepsis by cecal ligation and perforation (CLP) and treated orally with FO, LA, or FO+LA. At 24 h after surgery, the hippocampus, prefrontal cortex, and total cortex were obtained and assayed for levels of cytokines, myeloperoxidase (MPO) activity, protein carbonyls, superoxide dismutase (SOD), and catalase (CAT) activity. At 10 days after surgery, brain-derived neurotrophic factor (BDNF) levels were determined and behavioral tests were performed. The combination diminished in vitro levels of pro-inflammatory cytokines. The combination reduced TNF-α in the cortex, IL-1ß in the prefrontal cortex, as well as MPO activity, and decreased protein carbonyls formation in all structures. The combination enhanced catalase activity in the prefrontal cortex and hippocampus, elevated BDNF levels in all structures, and prevented behavioral impairment. In summary, the combination was effective in preventing cognitive damage by reducing neuroinflammation and oxidative stress and increasing BDNF levels.


Brain/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Fish Oils/pharmacology , Inflammation/pathology , Oxidative Stress/drug effects , Sepsis/complications , Thioctic Acid/pharmacology , Animals , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Catalase/metabolism , Cells, Cultured , Cytokines/metabolism , Female , Inflammation/complications , Kaplan-Meier Estimate , Memory Disorders/complications , Microglia/drug effects , Microglia/metabolism , Open Field Test , Peroxidase/metabolism , Protein Carbonylation/drug effects , Rats, Wistar , Superoxide Dismutase/metabolism
...